一文带你全面了解数字孪生的“前世今生”

2023-02-04

数字孪生作为数字经济发展的重要一环,将有力推动数字产业化和产业数字化进程,加快实现数字经济的国家战略。我们今天谈谈数字孪生的由来、发展、内涵及其意义,从而全方面了解数字孪生的起源发展、技术沿革、技术定义与典型特征及数字孪生技术与其它技术的区别。



     一、数字孪生由来与发展     

数字孪生的起源

“孪生”的概念起源于美国国家航空航天局的“阿波罗计划”,即构建两个相同的航天飞行器,其中一个发射到太空执行任务,另一个留在地球上用于反映太空中航天器在任务期间的工作状态,从而辅助工程师分析处理太空中出现的紧急事件。当然,这里的两个航天器都是真实存在的物理实体。


“数字孪生”初始的概念模型是于2002年10月由迈克尔·格里弗斯(Michael Grieves)博士在美国制造工程协会管理论坛上所提出。而到2009年,美国空军相关实验室明确提出带有数字孪生的概念:“机身数字孪生(Airframe Digital Twin)”。在2010年,美国国家航空航天局(NASA)在《建模、仿真、信息技术和处理》和《材料、结构、机械系统和制造》两份技术路线图中正式开始使用数字孪生(Digital Twin)这一名称。


伴随着二十世纪末期到二十一世纪初期电子技术的不断发展成熟,数字技术不断提高,数字孪生技术所需的万物互联技术逐步走向现实,数字孪生技术进行大规模推广及应用所需的最后一块版图被补齐,使其具有成本效益。使得近年来学术和企业界对数字孪生的研究热度不减,愈发深入。国际标准更是通过ISO23247对数字孪生制造进行明确定义,界定了生产场景下的数字孪生。纵观数字孪生的发展历程,伴随着相关技术的迭代,数字孪生的内涵也不断丰富:从简单地对一个产品、一台设备、一条生产线等的数字孪生演进到更为复杂的对一个企业组织、一座城市的数字孪生,英国和德国甚至提出“数字国家”这种更为宏观的概念。


目前,学界和工业界对数字孪生概念的表述虽仍有差异,但正趋于共识:数字孪生是以特定目的为导向对物理世界现实对象的数字化表达。这一对象不仅包括产品、设备、建筑物等“实物”,也包括企业组织、城市等“实体”。通过对物理对象构建数字孪生模型,实现物理对象和数字孪生模型的双向映射。对于不同现实对象,其数字孪生模型构建的侧重点和用途不尽相同,对于企业组织、城市等组织数字孪生,则更强调对广域数据的聚合融通,着力于通过模拟仿真来优化全局决策,加强协同,也越来越得到企业管理者和政府的重视,使得数字孪生技术成为全世界各界公认的十大战略技术趋势之一。

技术沿革

数字孪生的技术实现依赖于诸多新技术的发展和高度集成,以及跨学科知识的综合应用,是一个复杂的、协同的系统工程,涉及的关键技术方法包括建模、大数据分析、机器学习、模拟仿真等。


举例而言,如果把数字孪生的构建比作“数字人”的创造,则其核心的建模过程相当于骨架的搭建过程;采集数据,开展数据治理和大数据分析,相当于生成人的肌肉组织;而数据在物理世界和赛博空间之间的双向流动正如人体的血液,所提供的动能使数字机体不断成长,对物理世界对象的映射更趋精准;模拟仿真使“数字人”具备智慧,从而使通过赛博空间高效率、低成本优化物理实体成为可能。


1)数字孪生建模技术经历了从实物的“组件组装”式建模到复杂实体的多维深度融合建模的发展。

  • 多维深度融合建模技术的逐渐成熟,支撑更复杂的实体组织或智慧城市的孪生模型构建:多维度建模技术的引入,通过融合不同粒度的属性、行为、特征等的“多空间尺度”,以及刻画物理对象随时间推进的演化过程、实时动态运行过程、外部环境与干扰影响等“多时间尺度”模型,使数字孪生模型能够同时反映建模对象在微观和宏观层面上的特征。


2)基于深度学习、强化学习等新兴机器学习技术的发展使得大数据分析能力显著提升,是构建面向实体的复杂数字孪生体的基础支撑。

  • 基于深度学习、强化学习等新兴机器学习技术的引入,实现多维异构数据的深度特征提取,一定程度上提高了数据分析效率,使得构建面向企业的复杂数字孪生体成为可能。


3)模拟仿真技术从早期的有限元分析对物理场的仿真,发展到网络模型对复杂实体组织的仿真。

  • 物理有限元分析主要关注于某个专业领域,比如实物的应力或疲劳等。而由于实体组织更加复杂,除了传统的物理特性外,还涉及复杂的业务因素,如针对工业制造企业需要面向人、机、料、法、环、财等多个要素,且要考虑相互间的复杂关系,需要依靠分布式仿真、交互式仿真、智能Agent等网络模型的不断迭代发展。



     二、数字孪生内涵及意义     


数字孪生是多类数字化技术集成融合和创新应用,基于建模工具在数字空间构建起精准物理对象模型,再利用实时IoT数据驱动模型运转,进而通过数据与模型集成融合构建起综合决策能力,推动工业全业务流程闭环优化。

技术孪生定义与典型特征

从标准化方面,数字孪生是具有数据连接的特定物理实体或过程的数字化表达,该数据连接可以保证物理状态和虚拟状态之间的同速率收敛,并提供物理实体或流程过程的整个生命周期的集成视图,有助于优化整体性能。


从学术研究方面,数字孪生是以数字化方式创建物理实体的虚拟实体,借助历史数据、实时数据以及算法模型等,模拟、验证、预测、控制物理实体全生命周期过程的技术手段。从根本上讲,数字孪生可以定义为有助于优化业务绩效的物理对象或过程的历史和当前行为的不断发展的数字资料。数字孪生模型基于跨一系列维度的大规模,累积,实时,真实世界的数据测量。


从企业实践方面,数字孪生是资产和流程的软件表示,用于理解、预测和优化绩效以实现改善的业务成果。数字孪生由三部分组成:数据模型,一组分析或算法,以及知识。


根据数字孪生的上述定义可以看出,数字孪生具有以下几个典型特征:

  • 互操作性:数字孪生中的物理对象和数字空间能够双向映射、动态交互和实时连接,因此数字孪生具备以多样的数字模型映射物理实体的能力,具有能够在不同数字模型之间转换、合并和建立“表达”的等同性。

  • 可扩展性:数字孪生技术具备集成、添加和替换数字模型的能力,能够针对多尺度、多物理、多层级的模型内容进行扩展。

  • 实时性:数字孪生技术要求数字化,即以一种计算机可识别和处理的方式管理数据以对随时间轴变化的物理实体进行表征。表征的对象包括外观、状态、属性、内在机理,形成物理实体实时状态的数字虚体映射。

  • 保真性:数字孪生的保真性指描述数字虚体模型和物理实体的接近性。要求虚体和实体不仅要保持几何结构的高度仿真,在状态、相态和时态上也要仿真。值得一提的是在不同的数字孪生场景下,同一数字虚体的仿真程度可能不同。例如工况场景中可能只要求描述虚体的物理性质,并不需要关注化学结构细节。

  • 闭环性:数字孪生中的数字虚体,用于描述物理实体的可视化模型和内在机理,以便于对物理实体的状态数据进行监视、分析推理、优化工艺参数和运行参数,实现决策功能,即赋予数字虚体和物理实体一个大脑。因此数字孪生具有闭环性。

数字孪生与其他技术的区别

(一)数字孪生与仿真

仿真技术应用仿真硬件和仿真软件通过仿真实验,借助某些数值计算和问题求解,反映系统行为或过程的模型技术。它依靠正确的模型和完整的信息、环境数据,反映物理世界的特性和参数。仿真技术仅仅能以离线的方式模拟物理世界,不具备分析优化功能,因此不具备数字孪生的实时性、闭环性等特征。


数字孪生需要依靠包括仿真、实测、数据分析在内的手段对物理实体状态进行感知、诊断和预测,进而优化物理实体,同时进化自身的数字模型。仿真技术作为创建和运行数字孪生的核心技术,是数字孪生实现数据交互与融合的基础。在此基础之上,数字孪生必须依托并集成其他新技术,与传感器共同在线以保证其保真性、实时性与闭环性。


(二)数字孪生与信息物理系统

CPS属于系统实现,而数字孪生侧重于模型的构建等技术实现。CPS是通过集成的感知、计算、通信和控制等信息技术和自动控制技术,构建了物理空间与虚拟空间中人、机、物、环境和信息等要素相互映射、适时交互、高效协同的复杂系统,实现系统内资源配置和运行的按需响应、快速迭代和动态优化。


数字孪生的构建作为建设CPS系统的使能技术基础,是CPS具体的物化体现。数字孪生的应用既有产品、也有产线、工厂和车间,直接对应CPS所面对的产品、装备和系统等对象。数字孪生在创立之初就明确了以数据、模型为主要元素构建的基于模型的系统工程,更适合采用人工智能或大数据等新的计算能力进行数据处理任务。


(三)数字孪生与数字主线

数字主线是产品模型在各阶段演化利用的沟通渠道,是依托于产品全生命周期的业务系统,涵盖产品构思、设计、供应链、制造、售后服务等各个环节。在整个产品的生命周期中,通过提供访问、整合以及将不同/分散数据转换为可操作性信息的能力来通知决策制定者。数字主线为产品数字孪生提供访问、整合和转换能力,其目标是贯通产品生命周期和价值链,实现全面追溯、信息交互和价值链协同。


在数字孪生的广义模型之中,存在着彼此具有关联的小模型。数字主线可以明确这些小模型之间的关联关系并提供支持。因此,从全生命周期这个广义的角度来说,数字主线是属于面向全生命周期的数字孪生。


数字孪生是对象、模型和数据,而数字主线是方法、通道、链接和接口。


(四)数字孪生与资产管理壳

出自工业4.0的资产管理壳,是德国自工业4.0组件开始,发展起来的一套描述语言和建模工具,从而使得设备、部件等企业的每一项资产之间可以完成互联互通与互操作。


相较于资产管理壳这样一个起到管控和支撑作用的“管家”,数字孪生如同一个“执行者”,从设计、模型和数据入手,感知并优化物理实体,同时推动传感器、设计软件、物联网、新技术的更新迭代。德国目前也正努力在把资产管理壳转变为支撑数字孪生的基础技术。

数字孪生功能结构

(一)连接层

具备采集感知和反馈控制两类功能,是数字孪生闭环优化的起始和终止环节。通过深层次的采集感知获取物理对象全方位数据,利用高质量反馈控制完成物理对象最终执行。


(二)映射层

具备数据互联、信息互通、模型互操作三类功能,同时数据、信息、模型三者间能够实时融合。其中,数据互联指通过工业通讯实现物理对象市场数据、研发数据、生产数据、运营数据等全生命周期数据集成;信息互通指利用数据字典、元数据描述等功能,构建统一信息模型,实现物理对象信息的统一描述;模型互操作指能够通过多模型融合技术将几何模型、仿真模型、业务模型、数据模型等多类模型进行关联和集成融合。


(三)决策层

在连接层和映射层的基础上,通过综合决策实现描述、诊断、预测、处置等不同深度应用,并将最终决策指令反馈给物理对象,支撑实现闭环控制。


全生命周期实时映射、综合决策、闭环优化是数字孪生发展三大典型特征。

  • 一是全生命周期实时映射,指孪生对象与物理对象能够在全生命周期实时映射,并持续通过实时数据修正完善孪生模型;

  • 二是综合决策,指通过数据、信息、模型的综合集成,构建起智能分析的决策能力;

  • 三是闭环优化,指数字孪生能够实现对物理对象从采集感知、决策分析到反馈控制的全流程闭环应用。本质是设备可识别指令、工程师知识经验与管理者决策信息在操作流程中的闭环传递,最终实现智慧的累加和传承。



    三、结论与展望     


尽管数字孪生目前已取得了很多成就,但仍在快速演进当中。模拟、新数据源、互操作性、可视化、仪器、平台等多个方面的共同推动实现了数字孪生技术及相关系统的快速发展, 随着当前的信息技术、制造技术、新材料技术等系列新兴技术的共同发展,上述要素还将持续得到优化。


目前,越来越多的企业开始广泛应用数字孪生技术,提升企业数字化转型的迭代升级。但数字孪生的大规模应用场景还比较有限,涉及的行业也有待继续拓展。数字孪生技术发展将一边探索和尝试、一边优化和完善。


分享